Sains Malaysiana 54(5)(2025): 1417-1426
http://doi.org/10.17576/jsm-2025-5405-17
Gene Expression Analysis Shows Anticancer Mechanism of Acacia podalyriifolia Ethanol Extract on MCF7 Cells
(Analisis Ekspresi Gen Menunjukkan Mekanisme Antikanser Ekstrak Etanol Acacia podalyriifolia pada Sel MCF7)
ARYO TEDJO1,2,3,*,
ROSMALENA1, AJENG MEGAWATI FAJRIN1, NORMA NUR AZIZAH2,
BERNA ELYA4 & NAJIHAH BINTI MOHD HASHIM5
1Department
of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
2Drug
Development Research Cluster, Indonesian Medical Education and Research
Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
3Master’s
Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
4Department
of Pharmacognosy, Phytochemistry, and Natural Products, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
5Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
Received:
25 May 2024/Accepted: 3 January 2025
Abstract
Breast
cancer, particularly luminal A subtype, remains a significant challenge due to
its resistance to certain therapies. Therefore, discovering new anticancer
agents is critical. MCF7 cancer cells are commonly used as a model for studying
luminal A breast cancer and screening potential anticancer compounds. This
study aimed to investigate the anticancer potential of Acacia podalyriifolia leaves ethanol extract on MCF7 cells by exploring its effects on the expression
of genes involved in the p53 signaling pathway. Differentially Expressed Genes
(DEGs) analysis was performed on GSE208731 and GSE233242 obtained from the Gene
Expression Omnibus (GEO) database to identify genes consistently regulated
between MCF7 cells and luminal A breast cancer from patients or common DEG.
The analysis identified several DEG,
including CDKN1A (p21), GADD45A, CCNE1, CDK2, and E2F1, which are associated
with the p53 signaling pathway. In this study, MCF7 cells were treated with IC50 dose of extract (154.52 µg/mL) was performed using the MTT assay. Then, gene expression analysis was performed using
quantitative PCR (qPCR) to evaluate the impact on p53-related genes/common
DEG. The
extract significantly downregulated CCNE1 and E2F1, which are downstream genes
in the p53 signaling pathway responsible for regulating the cell cycle. This
downregulation led to cell cycle arrest and inhibited cell proliferation,
suggesting the potential of Acacia podalyriifolia as a candidate
anticancer agent for luminal A breast cancer.
Keywords: Acacia podalyriifolia; cell cycle
arrest; differentially
expressed genes; luminal A; MCF7 cells
Abstrak
Kanser payudara, terutamanya subjenis luminal A, kekal sebagai cabaran besar disebabkan oleh rintangannya terhadap terapi tertentu. Oleh itu, penemuan agen antikanser yang baharu adalah amat penting. Sel kanser MCF7 lazimnya digunakan sebagai model untuk mengkaji kanser payudara luminal A dan menyaring sebatian antikanser yang berpotensi. Penyelidikan ini bertujuan untuk mengkaji potensi antikanser ekstrak etanol daun Acacia podalyriifolia terhadap sel MCF7 dengan meneliti kesannya ke atas ekspresi gen yang terlibat dalam laluan isyarat p53. Analisis Gen Terekspresi Berbeza (DEGs) dijalankan ke atas set data GSE208731 dan
GSE233242 yang diperoleh daripada pangkalan data Gene Expression Omnibus (GEO) untuk mengenal pasti gen yang dikawal secara tekal antara sel MCF7 dan sel kanser payudara luminal A daripada pesakit. Analisis ini mengenal pasti beberapa DEG, termasuk CDKN1A (p21), GADD45A, CCNE1, CDK2 dan E2F1 yang berkaitan dengan laluan isyarat p53. Dalam kajian ini, sel MCF7 dirawat dengan ekstrak dos IC50 (154.52 µg/mL) yang diperoleh melalui ujian MTT. Seterusnya, analisis ekspresi gen dilakukan menggunakan PCR kuantitatif (qPCR) untuk menilai kesan ke atas gen berkaitan p53/DEG bersama. Ekstrak tersebut didapati menurunkan ekspresi CCNE1 dan
E2F1 dengan ketara, iaitu gen hiliran dalam laluan isyarat p53 yang bertanggungjawab mengawal kitaran sel. Pengawalaturan rendah ekspresi ini membawa kepada penahanan kitaran sel dan perencatan percambahan sel, menunjukkan potensi A. podalyriifoliasebagai calon agen antikanser untuk kanser payudara luminal A.
Kata kunci: Acacia podalyriifolia; gen yang diekspresikan berbeza; luminal A; penahanan kitaran sel; sel MCF7
REFERENCES
AbuHammad, S. & Zihlif, M. 2013.
Gene expression alterations in doxorubicin resistant MCF7 breast cancer cell
line. Genomics 101(4): 213-220. https://doi.org/10.1016/j.ygeno.2012.11.009
Alshabi, A.M., Vastrad, B., Shaikh, I.A. & Vastrad, C. 2019. Exploring the molecular mechanism of the drug-treated breast cancer based
on gene expression microarray. Biomolecules 9(7): 282. https://doi.org/10.3390/biom9070282
Anderson, D.H. 2021. Luminal A
breast cancer resistance mechanisms and emerging treatments. In Biological
Mechanisms and the Advancing Approaches to Overcoming Cancer Drug Resistance Elsevier. pp. 1-22. https://doi.org/10.1016/B978-0-12-821310-0.00010-3
Arsianti, A., Nur Azizah, N. &
Erlina, L. 2023. Molecular docking, ADMET profiling of gallic acid and its
derivatives (N-alkyl gallamide) as apoptosis agent of breast cancer
MCF-7 cells. F1000Research 11: 1453-1479. https://doi.org/10.12688/f1000research.127347.2
Arzanova, E. & Mayrovitz, H.N.
2022. The epidemiology of breast cancer. In Breast Cancer. Brisbane: Exon Publications. pp. 1-20. https://doi.org/10.36255/exon-publications-breast-cancer-
Barrett, T., Wilhite, S.E., Ledoux,
P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy,
K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson,
C.L., Serova, N., Davis, S. & Soboleva, A. 2012. NCBI GEO: Archive for functional genomics data sets - update. Nucleic Acids Research 41(D1): D991-D995. https://doi.org/10.1093/nar/gks1193
Broude, E.V., Demidenko, Z.N., Vivo, C., Swift, M.E., Davis, B.M.,
Blagosklonny, M.V. & Roninson, I.B. 2007. p21 (CDKN1A) is a negative
regulator of p53 stability. Cell Cycle (Georgetown, Tex.) 6(12): 1468-1471.
Bunz, F., Hwang, P.M., Torrance, C.,
Waldman, T., Zhang, Y., Dillehay, L., Williams, J., Lengauer, C., Kinzler, K.W.
& Vogelstein, B. 1999. Disruption of p53 in human cancer cells alters the
responses to therapeutic agents. Journal of Clinical Investigation 104(3): 263-269. https://doi.org/10.1172/JCI6863
Elansary, H.O., Szopa, A., Kubica,
P., Ekiert, H., Al-Mana, F.A. & Al-Yafrsi, M.A. 2020. Antioxidant and biological
activities of acacia saligna and lawsonia inermis natural populations. Plants 9(7): 908-925. https://doi.org/10.3390/plants9070908
Fang, Z., Lin, M., Chen, S., Liu,
H., Zhu, M., Hu, Y., Han, S., Wang, Y., Sun, L., Zhu, F., Xu, C. & Gong, C.
2022. E2F1 promotes cell cycle progression by stabilizing spindle fiber in
colorectal cancer cells. Cellular & Molecular Biology Letters 27(1): 90-111. https://doi.org/10.1186/s11658-022-00392-y
Gartel, A.L. & Tyner, A.L. 2002.
The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Molecular
Cancer Therapeutics1(8): 639-649.
Haryanti, S. & Widiyastuti, Y.
2017. Aktivitas sitotoksik pada sel MCF-7 dari tumbuhan Indonesia untuk pengobatan tradisional kanker
payudara. Media Penelitian dan
Pengembangan Kesehatan 27(4): 247-254.
Kanehisa, M., Furumichi, M., Sato,
Y., Kawashima, M. & Ishiguro-Watanabe, M. 2023. KEGG for taxonomy-based
analysis of pathways and genomes. Nucleic Acids Research 51(D1): D587-D592. https://doi.org/10.1093/nar/gkac963```
Kluska, M., Piastowska-Ciesielska, A.W.
& Tokarz, P. 2023. Cell cycle status influences resistance to apoptosis
induced by oxidative stress in human breast cancer cells, which is accompanied
by modulation of autophagy. Current Issues in Molecular Biology 45(8): 6325-6338. https://doi.org/10.3390/cimb45080399
Kumari, R. & Jat, P. 2021.
Mechanisms of cellular senescence: Cell cycle arrest and senescence associated
secretory phenotype. Frontiers in Cell and Developmental Biology 9: 645593. https://doi.org/10.3389/fcell.2021.645593
Lessard, F., Igelmann, S., Trahan,
C., Huot, G., Saint-Germain, E., Mignacca, L., Del Toro, N., Lopes-Paciencia,
S., Le Calvé, B., Montero, M., Deschênes-Simard, X., Bury, M., Moiseeva, O.,
Rowell, M.C., Zorca, C.E., Zenklusen, D., Brakier-Gingras, L., Bourdeau, V.,
Oeffinger, M. & Ferbeyre, G. 2018. Senescence-associated ribosome
biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nature
Cell Biology 20(7): 789-799. https://doi.org/10.1038/s41556-018-0127-y
Livak, K.J. & Schmittgen, T.D.
2001. Analysis of relative gene expression data using real-time quantitative
PCR and the 2−ΔΔCT method. Methods 25(4): 402-408.
https://doi.org/10.1006/meth.2001.1262
Moon,
H.R., Ospina-Muñoz, N., Noe-Kim, V., Yang, Y., Elzey, B.D., Konieczny, S.F.
& Han, B. 2020. Subtype-specific characterization of
breast cancer invasion using a microfluidic tumor platform. PLoS ONE 15(6): e0234012. https://doi.org/10.1371/journal.pone.0234012
Orrantia-Borunda, E.,
Anchondo-Nuñez, P., Acuña-Aguilar, L.E., Gómez-Valles, F.O. &
Ramírez-Valdespino, C.A. 2022. Subtypes of breast cancer. In Breast Cancer. Brisbane: Exon Publications. pp.
31-42. https://doi.org/10.36255/exon-publications-breast-cancer-epidemiology
Pfaffl, M.W., Horgan, G.W. & Dempfle, L. 2002.
Relative expression software tool (REST) for group-wise comparison and
statistical analysis of relative expression results in real-time PCR. Nucleic
Acids Research 30(9): e36. https://doi.org/10.1093/nar/30.9.e36
Qiu, J., Zhang, T., Zhu, X., Yang,
C., Wang, Y., Zhou, N., Ju, B., Zhou, T., Deng, G. & Qiu, C. 2019.
Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. International
Journal of Molecular Sciences 21(1): 131-145. https://doi.org/10.3390/ijms21010131
Rahmawati, Y., Setyawati, Y.,
Widodo, I., Ghozali, A. & Purnomosari, D. 2018. Molecular subtypes of
Indonesian breast carcinomas - Lack of association with patient age and tumor
size. Asian Pacific Journal of Cancer Prevention 19(1): 161-166. https://doi.org/10.22034/APJCP.2018.19.1.161
Saremi, S., Kolahi, M., Tabandeh, M.
& Hashemitabar, M. 2022. Induction of apoptosis and suppression of Ras gene
expression in MCF human breast cancer cells. Journal of Cancer Research and
Therapeutics 18(4): 1052-1060. https://doi.org/10.4103/jcrt.JCRT_624_20
Schagerholm, C., Robertson, S.,
Sifakis, E.G., Hases, L., Williams, C. & Hartman, J. 2022. 223P Gene
expression profiles in endocrine-resistant breast cancer. Annals of Oncology 33: S640. https://doi.org/10.1016/j.annonc.2022.07.262
Shang, C. & Xu, D. 2022.
Epidemiology of breast cancer. Oncologie 24(4): 649-663. https://doi.org/10.32604/oncologie.2022.027640
Suganya, K., Poornima, A., Sumathi,
S., Chigurupati, S., Alyamani, N.M., Ghazi Felemban, S., Bhatia, S.,
Al-Harrasi, A. & Sayed Moawad, A. 2022. Rutin induces endoplasmic reticulum
stress-associated apoptosis in human triple-negative breast carcinoma MDA-MB-231
cells - In vitro and in silico docking studies. Arabian Journal of
Chemistry 15(9): 104021-104035. https://doi.org/10.1016/j.arabjc.2022.104021
Ung, A.T. & Asmara, A.P. 2023.
Bioactive phytochemicals of Acacia saligna. Molecules 28(11): 4396-4425. https://doi.org/10.3390/molecules28114396
Zhang, W., Liu, L., Zhao, S., Chen,
L., Wei, Y., Chen, W. & Ge, F. 2022. Research progress on RNA‑binding
proteins in breast cancer (Review). Oncology Letters 23(4): 121-135. https://doi.org/10.3892/ol.2022.13241
Zheng, X., Chen, L., Liu, W., Zhao,
S., Yan, Y., Zhao, J., Tian, W. & Wang, Y. 2023. CCNE1 is a predictive and
immunotherapeutic indicator in various cancers including UCEC: A pan-cancer analysis. Hereditas 160(1): 13-30. https://doi.org/10.1186/s41065-023-00273-0
Zingue, S., Michel, T., Cisilotto,
J., Tueche, A.B., Ndinteh, D.T., Mello, L.J., Njamen, D. & Creczynski-Pasa,
T.B. 2018. The hydro-ethanolic extract of Acacia seyal (Mimosaceae) stem
barks induced death in an ER-negative breast cancer cell line by the intrinsic
pathway of apoptosis and inhibited cell migration. Journal of
Ethnopharmacology 223: 41-50. https://doi.org/10.1016/j.jep.2018.05.021
*Corresponding author;
email: aryo.tedjo@ui.ac.id
|